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Reasons for Upscaling Pore-Scale to
Continuum Scale

• Validate continuum model
– Does simple volume averaging work?
– Obtain continuum constitutive relations from pore-

scale model

• Determine form of continuum model (single, dual, …)
best suited for given porous medium

• Use pore-scale model to understand effects of
multiscale processes at the continuum scale
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Multi-Scale Processes
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Multi-Scale, Multicomponent Reactive Transport
Equations

Primary (bulk) domain:

Boundary condition and interfacial flux:

Secondary (kth matrix) domain:
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Pore-Scale Models

• Pore-Network Model
– Abstraction of pore geometry: pore-scale heterogeneity unconstrained
– Does not discretize pore space: pore-scale gradients not represented
– Can handle larger domains compared to LBM
– Treats minerals reactions through volume averaged rate

• Lattice Boltzmann Model (LBM)
– Resolves individual pore space
– Compute pore velocity (solves Navier-Stokes equations)
– Treats mineral reactions as boundary condition at fluid-solid interface
– Smallest practical resolution ~ 0.1 µm
– Difficult to impossible to resolve solid phase at very small scales
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• Evolution equation for particle distribution function
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LBM METHOD OF SOLUTION

• Explicit Finite Difference
– Streaming

– Collision

– Courant-Friedrichs-Lewy Condition

• Equivalent to Navier-Stokes Equations

• Easily Parallelizable
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• Evolution Equation for Particle Distribution Function
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• Pore Scale Convection-Diffusion-Reaction Equation

• Surface Reaction Boundary Condition
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Moving Boundary Problem:
Dissolution and Precipitation in LBM

• Treat solid phase as continuum
– More than one mineral may coexist at a single node
– Solid concentration calculated using continuum-based equation:

– Surface area am based on lattice spacing
     and may include roughness factor
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LBM Calculation of Tortuosity

LBM simulation
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Fracture-Matrix Interaction
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Discrete Fracture Model

Taylor 
Dispersion
1.5 mm

Continuum Model
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Example: Structured Porous Medium

FLOW Tracer
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Model Geometry and Continuum Fit Parameters
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Comparison of Upscaled LB Model to
Continuum Model (Tracer)
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Linear Kinetics: Stationary State Dissolution

Dual continuum prediction
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Equivalence of Dual and Single Continuum
Models for a Single Component Stationary-State
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Multicomponent System:
100 bars CO2 + Mg + SO4 + Calcite →

Dolomite + Gypsum

t = 105 steps

t = 2x105 steps

t = 4x105 steps

Calcite

Dolomite

Gypsum

1 LBM step
= 0.026 s
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Comparison with Single Continuum Model



PCL-21

Continuum and LBM Surface Areas

• Continuum Model
– Different surface areas for precipitation and dissolution
– Surface evolution empirical:

• LBM
– Surface area is determined by geometry and nucleation

kinetics—surface area evolution related to rules for
determining geometry evolution
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Upscaling LBM Surface Area
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Conclusions

• Multicomponent Lattice Boltzmann model developed with
same chemistry as in continuum models with heterogeneous
mineral reactions incorporated as boundary conditions at
mineral surface.

• Pore-scale models can provide insight into upscaled
continuum model formulations and provide parameter values
for permeability, effective diffusivity (tortuosity), micro-scale
dispersivity, reactive surface area etc.

• Generally a multi-scale continuum model is needed to fit a
pore-scale simulation.



PCL-24

Conclusions [Continued]

• Main difficulty in applying LBM is quantifying pore-
scale geometry, mineral distribution and associated
surface area at micron (pore) scales.
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Future Work

• Validate LBM and apply to realistic pore-scale geometries.

• Investigate upscaling pore-scale sorption processes: can sorption
“kinetics” be explained by diffusion processes coupled to fast
reaction kinetics in complex pore geometry?
– Ion exchange
– Surface complexation and charge balance

• Nernst-Planck equation

• Evolving multiple continua
– Weathering: continuous evolution of geometry from fractured

(bed rock) to porous medium (saprolite)


